Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 24(12): e57695, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38014610

RESUMEN

In this study, we found that in the adipose tissue of wildtype animals, insulin and TGF-ß signalling converge via a BMP antagonist short gastrulation (sog) to regulate ECM remodelling. In tumour bearing animals, Sog also modulates TGF-ß signalling to regulate ECM accumulation in the fat body. TGF-ß signalling causes ECM retention in the fat body and subsequently depletes muscles of fat body-derived ECM proteins. Activation of insulin signalling, inhibition of TGF-ß signalling, or modulation of ECM levels via SPARC, Rab10 or Collagen IV in the fat body, is able to rescue tissue wasting in the presence of tumour. Together, our study highlights the importance of adipose ECM remodelling in the context of cancer cachexia.


Asunto(s)
Caquexia , Neoplasias , Animales , Caquexia/etiología , Caquexia/metabolismo , Drosophila , Insulina , Cuerpo Adiposo/metabolismo , Tejido Adiposo/metabolismo , Factor de Crecimiento Transformador beta , Neoplasias/complicaciones
2.
Dev Cell ; 58(10): 825-835.e6, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37086718

RESUMEN

Forces controlling tissue morphogenesis are attributed to cellular-driven activities, and any role for extracellular matrix (ECM) is assumed to be passive. However, all polymer networks, including ECM, can develop autonomous stresses during their assembly. Here, we examine the morphogenetic function of an ECM before reaching homeostatic equilibrium by analyzing de novo ECM assembly during Drosophila ventral nerve cord (VNC) condensation. Asymmetric VNC shortening and a rapid decrease in surface area correlate with the exponential assembly of collagen IV (Col4) surrounding the tissue. Concomitantly, a transient developmentally induced Col4 gradient leads to coherent long-range flow of ECM, which equilibrates the Col4 network. Finite element analysis and perturbation of Col4 network formation through the generation of dominant Col4 mutations that affect assembly reveal that VNC morphodynamics is partially driven by a sudden increase in ECM-driven surface tension. These data suggest that ECM assembly stress and associated network instabilities can actively participate in tissue morphogenesis.


Asunto(s)
Drosophila , Matriz Extracelular , Animales , Drosophila/genética , Matriz Extracelular/fisiología , Morfogénesis/fisiología , Sistema Nervioso Central
3.
J Imaging ; 6(5)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34460738

RESUMEN

In this paper, a novel method for interaction detection is presented to compare the contact dynamics of macrophages in the Drosophila embryo. The study is carried out by a framework called macrosight, which analyses the movement and interaction of migrating macrophages. The framework incorporates a segmentation and tracking algorithm into analysing the motion characteristics of cells after contact. In this particular study, the interactions between cells is characterised in the case of control embryos and Shot mutants, a candidate protein that is hypothesised to regulate contact dynamics between migrating cells. Statistical significance between control and mutant cells was found when comparing the direction of motion after contact in specific conditions. Such discoveries provide insights for future developments in combining biological experiments with computational analysis.

4.
PLoS Genet ; 14(9): e1007483, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30260959

RESUMEN

Basement membranes (BMs) are thin sheet-like specialized extracellular matrices found at the basal surface of epithelia and endothelial tissues. They have been conserved across evolution and are required for proper tissue growth, organization, differentiation and maintenance. The major constituents of BMs are two independent networks of Laminin and Type IV Collagen in addition to the proteoglycan Perlecan and the glycoprotein Nidogen/entactin (Ndg). The ability of Ndg to bind in vitro Collagen IV and Laminin, both with key functions during embryogenesis, anticipated an essential role for Ndg in morphogenesis linking the Laminin and Collagen IV networks. This was supported by results from cultured embryonic tissue experiments. However, the fact that elimination of Ndg in C. elegans and mice did not affect survival strongly questioned this proposed linking role. Here, we have isolated mutations in the only Ndg gene present in Drosophila. We find that while, similar to C.elegans and mice, Ndg is not essential for overall organogenesis or viability, it is required for appropriate fertility. We also find, alike in mice, tissue-specific requirements of Ndg for proper assembly and maintenance of certain BMs, namely those of the adipose tissue and flight muscles. In addition, we have performed a thorough functional analysis of the different Ndg domains in vivo. Our results support an essential requirement of the G3 domain for Ndg function and unravel a new key role for the Rod domain in regulating Ndg incorporation into BMs. Furthermore, uncoupling of the Laminin and Collagen IV networks is clearly observed in the larval adipose tissue in the absence of Ndg, indeed supporting a linking role. In light of our findings, we propose that BM assembly and/or maintenance is tissue-specific, which could explain the diverse requirements of a ubiquitous conserved BM component like Nidogen.


Asunto(s)
Membrana Basal/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Glicoproteínas de Membrana/fisiología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Fertilidad/fisiología , Masculino , Músculos/citología , Músculos/metabolismo , Mutación , Especificidad de Órganos/fisiología , Organogénesis/fisiología , Dominios Proteicos/fisiología
5.
G3 (Bethesda) ; 8(3): 845-857, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29321168

RESUMEN

Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses, and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid a fuller understanding of these processes, but are lacking. Here, we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, the cytoplasm, or the actin cytoskeleton from embryonic stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae, and adults. They permit efficient GAL4-independent Fluorescence-Activated Cell Sorting (FACS) analysis/sorting of plasmatocytes throughout life. To facilitate genetic studies of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that, in combination with extant GAL4 drivers, allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and GAL80 lines that block GAL4 drivers from affecting plasmatocytes, all of which function from the early embryo to the adult.

6.
Cell Rep ; 21(6): 1461-1470, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29117553

RESUMEN

The most prominent developmental function attributed to the extracellular matrix (ECM) is cell migration. While cells in culture can produce ECM to migrate, the role of ECM in regulating developmental cell migration is classically viewed as an exogenous matrix presented to the moving cells. In contrast to this view, we show here that Drosophila embryonic hemocytes deposit their own laminins in streak-like structures to migrate efficiently throughout the embryo. With the help of transplantation experiments, live microscopy, and image quantification, we demonstrate that autocrine-produced laminin regulates hemocyte migration by controlling lamellipodia dynamics, stability, and persistence. Proper laminin deposition is regulated by the RabGTPase Rab8, which is highly expressed and required in hemocytes for lamellipodia dynamics and migration. Our results thus support a model in which, during embryogenesis, the Rab8-regulated autocrine deposition of laminin reinforces directional and effective migration by stabilizing cellular protrusions and strengthening otherwise transient adhesion states.


Asunto(s)
Proteínas de Drosophila/metabolismo , Laminina/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Embrión no Mamífero/citología , Desarrollo Embrionario , Matriz Extracelular/metabolismo , GTP Fosfohidrolasas/metabolismo , Hemocitos/citología , Hemocitos/metabolismo , Microscopía Fluorescente , Seudópodos/fisiología
7.
Curr Biol ; 27(22): 3526-3534.e4, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29129537

RESUMEN

The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3-5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6-9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components.


Asunto(s)
Membrana Basal/fisiología , Matriz Extracelular/metabolismo , Animales , Membrana Basal/metabolismo , Movimiento Celular/fisiología , Colágeno/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Matriz Extracelular/fisiología , Macrófagos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...